Technology Demonstrations & Infusions

- NASA
- Technology and continued technological progress is critical for the future of SMD and its future missions
- Technology investments are pathways to flight as strategic elements of SMD programs
- SMD is actively developing flight opportunities for new technologies as part of AOs.
 - Based on our experiences, performance metrics and feedback, we will continually adjust.
- Goal: Fly at least one new technology with every science mission

GREEN PROPELLENT INFUSION MISSION

GPIM will test a new propulsion system that runs on a highperformance and non-toxic spacecraft fuel. This technology could help propel constellations of small satellites in and beyond low-Earth orbit. 7120.5 Space Flight Phase E

Category: 3 Risk Class: D

Objectives:

- Demonstrate the on-orbit performance of a complete AF-M315E propulsion system suitable for an ESPA-class spacecraft
- Demonstrate AF-M315E steady-state performance of delivered volumetric impulse at least 40% greater than hydrazine
- Demonstrate spacecraft propellant loading and cleanup without need for personal protective equipment

Access to Space:

- Launched into space June 25,2019 on a Falcon Heavy Rocket, as part of the USAF Space Test Program-2 (STP-2) mission
- USAF SMC operates GPIM using AFSCN ground stations
- 13 months of on-orbit operations

Team:

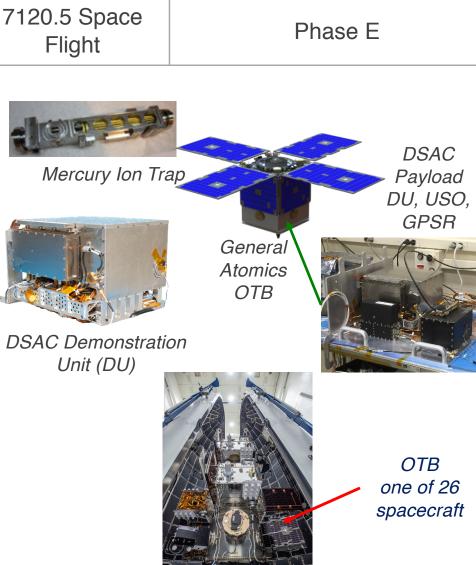
- Lead: Ball Aerospace
- Partners:
 - o Aerojet Rocketdyne: Thruster & propulsion system
 - Air Force Research Laboratory: AF-M315E development, propellant loading
 - o Glenn Research Center: Plume modeling
 - Goddard Space Flight Center: Slosh & Flow Testing
 - Kennedy Space Center: Propellant handling/testing
 - AF SMC: AFSCN ground stations, MMSOC operations

	FY13	FY14	FY15	FY16	FY17	FY18	FY19	FY20 FY21
ATP	KDP-B KDP-C			KDP-D €			KDP-E	Project Close
	A B		С		D		E	F
	• •	۲	۲	۲			$\odot \star$	۲
1	SRR PDR/IBA	CDR	CDA GPP	PS PIR/ PSSR			PSR Launch	Demo
			Del	SVTRR				Finish

DEEP SPACE ATOMIC CLOCK

Spaceflight of a hosted payload to demo a small, low-mass atomic clock with unprecedented stability for deep space navigation and science.

Objectives:


- Demonstrate Allan deviation < 2.0E-14 @ one day
- Demonstrate < 10m orbit determination using one-way deep space scenario
- Build physics package < 7kg and < 30W

Access to Space:

- Launched June 2019
- Hosted payload on Surrey Satellite Technology-US OTB (civil) spacecraft
- OTB ESPA-class spacecraft on a Falcon Heavy LV (USAF STP-2)
- General Atomics operates OTB
- JPL operates DSAC payload
- 7 week commissioning; 1 year on-orbit experiment

Team:

- JPL (lead) building clock system, operate DSAC payload
- General Atomics Host Mission Provider (CO) integrates & operates OTB
- BRE (Moog) GPS Receiver (AZ)
- FEI Ultra Stable Oscillator (NY)
- Microsemi Synthesizer (MA)
- LASP UV Detector (CO)
- Partners: HEOMD SCaN

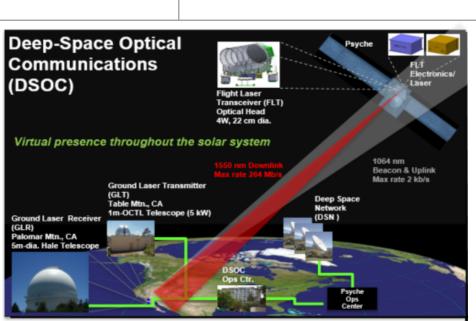
Launched June 25, 2019

DEEP SPACE OPTICAL COMMUNICATIONS

Spaceflight of a hosted payload to demo a small, low-mass optical communication system on a planetary scale to provide substantially greater communications speeds at great distances

Objectives:

- Demonstrate deep space optical communication capability
 - Designed for 0.1 to 2.7 AU
 - Sun-Earth Probe Angle > 25° (TBC)
- Develop a Flight Laser Transceiver (FLT) for accommodation on Psyche spacecraft
 - Downlink data-rate of 0.256 200 Mb/s
 - Uplink data-rate of [2 kb/s]
 - Prime demonstration duration 1 year
 - Develop ground network
 - GLT for transmitting laser beacon out to 2.7 AU
 - GLR retrofitted with photon counting receiver
 - Mission Operations System


Project Manager (PM): Bill Klipstein Project Technologist (PT): Abi Biswas

Sponsors:

STMD/TDM (flight), HEOMD/SCaN (ground), SMD (host)

Facilities:

Optical Comm and Environmental Test Labs at JPL Vendor site Labs and test facilities Optical Communication Telescope Laboratory (OCTL) Caltech Optical Observatories/Hale Telescope Observatory Psyche mission host

Key Milestones:

(Aug, 2022 launch on Psyche (Mars fly by)
FY14-16 GCD Technology Development Phase
FY17 Phase A Start, SRR/MDR
FY19 Flight PDR
FY20 Flight CDR, Ground PDR
FY20 Downlink I+T start at JPL
FY21 Del to S/C, start I+T at Hale and OCTL
FY22 ORR, Launch
FY22-23 Ops

7120.5 Space Flight

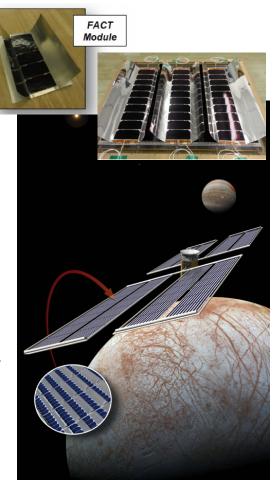
Phase C

EXTREME ENVIRONMENT SOLAR POWER (EESP)

EESP technology offers increased solar power for NASA missions in the general vicinity of Jupiter [~5 Astronomical Units (AUs)]. EESP is designed to operate in areas with low-intensity sunlight and low temperatures (LILT) as well as in higher radiation environments such as that around Jupiter.

Transformational Array

- Modular and integrated reflector / PV flexible blanket assembly on DSS Roll Out Solar Array (ROSA)
- Integral reflector elements reliably deploy as blanket assembly unrolls
- Wide off-pointing acceptance angles (alpha: +/- 5-deg [up to +/-10) before non-cosine losses; beta: typical cosine loss behavior)
- SSL/ATK CellSaver 7-yr+ GEO experiment suggests this concentrator architecture is viable


Technical Capabilities include increased

- Beginning of life solar cell efficiency, >35% (1 AU)
- End of life solar cell efficiency, >28% (LILT, 4 x 10¹⁵ 1 MeV e/cm² dosage)
- End of life specific power, > 8 W/kg
- Stowed packaging density: 51 kW / m³

Enabled by SolAero-developed IMM4 solar cell technology, applicable to <u>concentrator</u> and <u>planar</u> arrays

Exploration & Science Impact

- Enable subset of future NASA missions at larger distances from the sun using solar power
- Increase mission life, capability, and/or decrease mission mass for these missions
 Innovative technological approach that has continuing applicability to future SMD missions

